
5

Michael Russell
Elastic

Real world examples of using
Elastic at Elastic

1

Michael Russell
Software Engineer - Infrastructure

Real world examples of
using Elastic at Elastic

2

Me

Facts

• Is: Australian
• Lives: In the Netherlands
• Works: At Elastic
• Responds to: Michael,

Mick, Micky, Mike, Mikey,
Crazybus and Rusty

• Likes: Food, travelling,
gaming, music

3

We should use X because it will
solve our Y problem

Everyone

4

We should use Kubernetes
because it will solve all our

problems

A lot of people

5

Some questions I ask when solving any problem

• When did the problem actually start?

• What problem are you actually trying to solve?

• Does the proposed solution to the problem fix more things than it breaks?

• Are there more important problems we should be solving first?

• Has someone else already solved this problem?

6

Has someone else
already solved this
problem?
Normally yes...

7

Does the proposed
solution to the problem
fix more things than it
breaks?
This doesn’t always matter now

8

So what changed?

1. Make sure developers have everything they need to create software

1. Make sure users have everything they need to use the software

1. While doing this, use our software as much as possible
a. Even when it doesn’t make sense
b. Even when it wasn’t designed to do that

Infra team goals

9

Even when it doesn't make sense

• If it’s possible, users will try to do it

• If it isn’t possible we will know and can either:
‒ Stop others from making the same mistake
‒ Improve the software to make it possible
‒ Write a cool blog post about how to do it

• Bare minimum is to just stuff all of the logs and metrics into Elasticsearch
and plan to do something with it later

• Result: Around 50 Elasticsearch clusters with separate use cases

10

Common Infra use cases

• CI Build statistics

• Kubernetes metrics and logging

• “Normal” Server metrics and logging

• Website uptime and availability

• Having an easy way to use our stack without having to reinvent the wheel

11

Things that Infra likes

• Automation

• Having a monorepo

• Good documentation

• Good monitoring

• Having a dashboard for everything

• Guy Fieri

12

Things we don’t like

• Doing the same thing twice

• Manually running commands

• Clicking in a UI to make a change

• Finding out we don’t have a
dashboard for something

• Doing the same thing twice

13

Heartbeat - the plan

• Replace external monitoring service

• Use heartbeat

• Use watcher for alerting

• Done???

14

Heartbeat - the reality

• Couldn’t use a single watch

• Couldn’t use a single watch per
team

• Couldn’t use a regex pattern to
check content of a website

• Couldn’t do recovery alerts

• No way to allow the user to
configure where the alert went

15

Heartbeat - the solution

• Small python application to
generate a seperate watch per
heartbeat monitor

• Heartbeat monitor configuration
being used to configure the watch

• Automatically generate recovery
alerts

• Added upstream support for
checking regex patterns

16

Heartbeat - the reaction

• Why are you doing that?

• You are creating how many
watches?

• Watcher really wasn’t designed for
this!

17

heartbeat.monitors:

- name: shakshuka

type: http

schedule: '@every 1m'

check.response.status: 200

urls:

- 'https://shakshuka.app.example.com'

fields.watcher:

docs: 'https://github.com/repo/docs/shakshuka.md'

alerts:

slack:

- '@michael.russell'

Heartbeat - the configuration

18

Kubernetes

• We run a managed internal Elastic
Kubernetes service

• It has many integrations including
metricbeat and filebeat using the
Kubernetes module

• We had all the data but weren’t
doing anything with it.

• Kubernetes is all about abstractions

19

Kuberwatcher

• https://github.com/elastic/kuberwatcher

• Inspired by the heartbeat work

• Generates watcher alerts for groups of
pods (deployments, daemonsets,
cronjobs)

• Configuration can be overridden at the
namespace or pod level

20

apiVersion: v1

kind: Namespace

metadata:

name: michael

labels:

watcher: enabled

annotations:

watcher.alerts.slack: '@michael.russell'

watcher.docs: https://github.com/elastic/kuberwatcher/blob/master/README.md

Kuberwatcher configuration

21

Testing

• We make a lot of software at Elastic

• We test a lot of software at Elastic

• We have a lot of Jenkins jobs

• Even more Jenkins workers

22

Reality check

• Our software has to run everywhere

• We support different versions

• That’s a lot of combinations

23

Problem

• Build queue was too large which delayed testing

• Builds were failing because other builds didn’t clean up properly

• Infra team had to constantly fix bad workers

• Workers doing nothing during off peak times is expensive

• Sometimes we couldn’t replace a worker because the automation had
broken since it was last used

24

Attempt 1 with plugins

• Found a GCP dynamic worker plugin

• Initial testing went great

• Basic workflows worked perfect

• On a real world cluster it just didn’t work

• I was even warned not to use a plugin!

25

I solve problems, sometimes the
only way to do that is by writing

code

Me

26

Custom Code

• Even after several upstream fixes to the plugin things weren’t even close

• Last resort was to write some custom code

• Custom code that stops productivity for all of engineering if it doesn’t work

• It will need to have really really good logging and monitoring if we want to
be able to trust it

27

Logging

• We chose to deploy it into our
Kubernetes platform

• This gave us filebeat logging out of
the box

• Logging in JSON meant things
were automagically parsed for us!

• The Kubernetes integration meant
important metadata like cluster
name was already included with
the logs!

28

Metrics

• We now had lots of useful logs

• But we were missing a dashboard!

• Luckily we had structured logging
already so we could just log
whatever fields we wanted!

29

Alerting

• We needed to make sure that we got alerts when something was going
wrong

• We had lots of ideas about ways we could build this into the application

• Once again we first tried to use what we already had

• Simple watcher alert looking for error logs worked way better than
expected

30

"filter": [

{

"match": {

"kubernetes.namespace": "gobld"

}

},

{

"match": {

"json.level": "error"

}

}

Watcher alert

"condition": {

"compare": {

"ctx.payload.hits.total": {

"gt": 20

}

}

}

31

Another day another problem

• Jenkins was not building pull requests

• After some investigation it turned out GitHub has API rate limiting

• We were hitting these limits but didn’t know how fast (no dashboard!)

• Had previously discussed some ideas on writing something custom to get
this information into Elasticsearch

• The previous work I had done with Gobld gave me a better (faster) idea!

32

#!/usr/bin/env bash -e

curl --silent --fail \

-u ${GITHUB_TOKEN} \

https://api.github.com/rate_limit | tr -d '\n'

What was old is new again!

33

At the limit

• Yay we have a graph now

• Wow! It’s much worse than we thought

• Lets try changing things and see if the
graph changes!

• One problem is we don’t know what
the graph normally looks like :(

34

Could it be that new Gobld thing?

• Me: No way! It doesn’t use GitHub

• Me: Ok, I’ll turn it off for 5 minutes to
prove it isn’t Gobld

• *5 minutes later*

• Me: Oh no

35

Thank you!

79

��������� Elastic�
���	
�
https://elasticsearch.cn/

