背景
1.对于7版本(大版本)集群希望只维护一个版本,最终选择7.17,对同大版本的7.5版本集群进行升级
2.根据官方描述,_id放到堆外性能损失非常小可以忽略,且对BKD进行了优化
3.升级完成,一段时间之后,收到用户报障
4.抽样检查了下部分升级的集群,其中部分受到影响,部分不受影响。且每个集群内存均有一定优化(预期内)
调查&分析
1.发现is_deleted文档特别多,怀疑是7.17版本对于碎片过于敏感。做forcemerge,没什么效果。
2.GET _nodes/hot_threads 查看耗时部分,结果展示笼统,没得到关键信息。
3.给语句加上profile,查看耗时部分。
GET index-v1/_search
{"profile":"true","query":{"bool":{"filter":[{"term":{"xid":{"value":"11111111","boost":1.0}}},{"terms":{"status":[2,3,4],"boost":1.0}},{"terms":{"platform":["aaa","bbb"],"boost":1.0}},{"terms":{"pId":[1,2],"boost":1.0}}],"adjust_pure_negative":true,"boost":1.0}},"sort":[{"time":{"order":"desc"}}]}
从脱敏的简化结果中可以看出来,主要是 status、pId 字段耗时高,这两个字段都是integer类型,并且使用了terms查询。
{
"took": 554,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 5,
"relation": "eq"
},
"max_score": null,
"hits": [
...
]
},
"profile": {
"shards": [
{
"id": "[APxxxxxxxxxxxxxxQ][index-v1][0]",
"searches": [
{
"query": [
{
"type": "BooleanQuery",
"description": "#xid:111111111 #status:{2 3 4} #ConstantScore(platform:aaa platform:bbb) #pId:{1 2}",
"time_in_nanos": 415205306,
"breakdown": {
...
"build_scorer": 415028271
},
"children": [
{
"type": "TermQuery",
"description": "xid:111111111",
"time_in_nanos": 102656,
"breakdown": {
.....
"build_scorer": 86264
}
},
{
"type": "PointInSetQuery",
"description": "status:{2 3 4}",
"time_in_nanos": 220394978,
"breakdown": {
....
"build_scorer": 220385119
}
},
{
"type": "ConstantScoreQuery",
"description": "ConstantScore(platform:aaa platform:bbb)",
"time_in_nanos": 341845,
"breakdown": {
.....
"build_scorer": 282277
},
"children": [
{
"type": "BooleanQuery",
"description": "platform:aaa platform:bbb",
"time_in_nanos": 329042,
"breakdown": {
.....
"build_scorer": 277752
},
"children": [
{
"type": "TermQuery",
"description": "platform:aaa",
"time_in_nanos": 62446,
"breakdown": {
.....
"build_scorer": 37931
}
},
{
"type": "TermQuery",
"description": "platform:bbb",
"time_in_nanos": 15093,
"breakdown": {
.....
"build_scorer": 6981
}
}
]
}
]
},
{
"type": "PointInSetQuery",
"description": "pId:{1 2}",
"time_in_nanos": 194164297,
"breakdown": {
....
"build_scorer": 194160452
}
}
]
}
],
"rewrite_time": 40044,
"collector": [
{
"name": "SimpleFieldCollector",
"reason": "search_top_hits",
"time_in_nanos": 144012
}
]
}
]
4.单个的profile无法说明问题,进一步排查:使用arthas工具获取一段时间内的火焰图
可以看到主要就是BKD数据结构占用的CPU。
5.参考官方论坛相似问题:https://discuss.elastic.co/t/very-slow-search-performance-after-upgrade-to-7-16-1/296152/3
6.integer类型的terms查询性能较差,看起来官方描述的BKD相关优化指的是range
7.测试验证,将字段改成keyword,查看结果,CPU查询耗时恢复到正常范围
[尊重社区原创,转载请保留或注明出处]
本文地址:http://elasticsearch.cn/article/14737
本文地址:http://elasticsearch.cn/article/14737
3 个评论
你的意思,int类型查询会有性能问题,改成keyword?
实际中,也不可能全部改用keyword吧,如果要sum怎么办?
实际中,也不可能全部改用keyword吧,如果要sum怎么办?
int类型的terms查询性能有明显下降,字段的业务查询属性是相对明确的,比如status,type,orderId这种业务字段。terms这种点查使用keyword更加合适。如果要sum或者range,说明这字段的数字的属性更强,真实场景中也不会大量用terms来点查,那使用int或者long是比较合理的。