怎么又是你

使用5.5.0建立索引发生错误

Elasticsearch | 作者 hubiao | 发布于2017年08月01日 | 阅读数:4045

Version: 5.5.0
Windows 10
Jdk 1.8
 
 PUT /index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "ngram_analyzer": {
          "tokenizer": "ngram_tokenizer"
        }
      },
      "tokenizer": {
        "ngram_tokenizer": {
          "type": "ngram",
          "min_gram": 1,
          "max_gram": 6000
        }
      }
    }
  },
  "mappings": {
    "bigdata": {
      "dynamic_templates": [
        {
          "textMapping_no_analyzer_sore": {
            "match":"*_no_analyzer_sore",
            "mapping": {
              "type": "keyword",
              "store": "true",
              "analyzer": "not_analyzed"
            }
          }
        },
        {
          "textMapping_analyzer_sore": {
            "match":"*_analyzer_sore",
            "mapping": {
              "type": "text",
              "store": "true",
              "analyzer": "ngram_analyzer"
            }
          }
        }
 
我使用es自带 ngram分词,建立数据的时候就报如下错误
 
[2017-07-22T15:04:01,829][WARN ][o.e.i.c.IndicesClusterStateService] [5GI70mm] [[index][3]] marking and sending shard failed due to [shard failure, reason [already closed by tragic event on the index writer]]

java.lang.ArrayIndexOutOfBoundsException: -65536
at org.apache.lucene.index.TermsHashPerField.writeByte(TermsHashPerField.java:196) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.TermsHashPerField.writeVInt(TermsHashPerField.java:219) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.FreqProxTermsWriterPerField.writeProx(FreqProxTermsWriterPerField.java:80) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.FreqProxTermsWriterPerField.newTerm(FreqProxTermsWriterPerField.java:120) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.TermsHashPerField.add(TermsHashPerField.java:176) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.DefaultIndexingChain$PerField.invert(DefaultIndexingChain.java:796) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.DefaultIndexingChain.processField(DefaultIndexingChain.java:447) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.DefaultIndexingChain.processDocument(DefaultIndexingChain.java:403) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.DocumentsWriterPerThread.updateDocument(DocumentsWriterPerThread.java:232) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.DocumentsWriter.updateDocument(DocumentsWriter.java:478) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.IndexWriter.updateDocument(IndexWriter.java:1571) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.apache.lucene.index.IndexWriter.addDocument(IndexWriter.java:1316) ~[lucene-core-6.6.0.jar:6.6.0 5c7a7b65d2aa7ce5ec96458315c661a18b320241 - ishan - 2017-05-30 07:29:46]
at org.elasticsearch.index.engine.InternalEngine.index(InternalEngine.java:661) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.engine.InternalEngine.indexIntoLucene(InternalEngine.java:605) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.engine.InternalEngine.index(InternalEngine.java:505) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.shard.IndexShard.index(IndexShard.java:556) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.shard.IndexShard.index(IndexShard.java:545) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.bulk.TransportShardBulkAction.executeIndexRequestOnPrimary(TransportShardBulkAction.java:484) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.bulk.TransportShardBulkAction.executeBulkItemRequest(TransportShardBulkAction.java:143) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.bulk.TransportShardBulkAction.shardOperationOnPrimary(TransportShardBulkAction.java:113) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.bulk.TransportShardBulkAction.shardOperationOnPrimary(TransportShardBulkAction.java:69) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$PrimaryShardReference.perform(TransportReplicationAction.java:939) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$PrimaryShardReference.perform(TransportReplicationAction.java:908) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.ReplicationOperation.execute(ReplicationOperation.java:113) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$AsyncPrimaryAction.onResponse(TransportReplicationAction.java:322) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$AsyncPrimaryAction.onResponse(TransportReplicationAction.java:264) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$1.onResponse(TransportReplicationAction.java:888) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$1.onResponse(TransportReplicationAction.java:885) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.shard.IndexShardOperationsLock.acquire(IndexShardOperationsLock.java:147) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.index.shard.IndexShard.acquirePrimaryOperationLock(IndexShard.java:1657) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction.acquirePrimaryShardReference(TransportReplicationAction.java:897) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction.access$400(TransportReplicationAction.java:93) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$AsyncPrimaryAction.doRun(TransportReplicationAction.java:281) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.common.util.concurrent.AbstractRunnable.run(AbstractRunnable.java:37) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$PrimaryOperationTransportHandler.messageReceived(TransportReplicationAction.java:260) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.action.support.replication.TransportReplicationAction$PrimaryOperationTransportHandler.messageReceived(TransportReplicationAction.java:252) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.transport.RequestHandlerRegistry.processMessageReceived(RequestHandlerRegistry.java:69) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.transport.TransportService$7.doRun(TransportService.java:644) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.common.util.concurrent.ThreadContext$ContextPreservingAbstractRunnable.doRun(ThreadContext.java:638) ~[elasticsearch-5.5.0.jar:5.5.0]
at org.elasticsearch.common.util.concurrent.AbstractRunnable.run(AbstractRunnable.java:37) ~[elasticsearch-5.5.0.jar:5.5.0]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) [?:1.8.0_111]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) [?:1.8.0_111]
at java.lang.Thread.run(Thread.java:745) [?:1.8.0_111]
 
 
 
已邀请:

kennywu76 - Wood

赞同来自: nainc

显然"min_gram": 1, "max_gram": 6000 这个设置有问题,当输入是一段大文本时,分析生成的term是海量的。从报错java.lang.ArrayIndexOutOfBoundsException: -65536 看,数组越界,应该是超过了底层Lucene对某个字段能容纳的term的上限。
 
我查了下资料,Lucene对于一个生成的token的大小上限是32k,然后分析文本的时候,用于存放token的内存缓冲区大小最大是2048MB, 因此缓冲区最多能缓存65536个token。  如果你输入的文本超级大,max_gram也超级大,那么分析出来的uniq token会超过缓冲区大小,从而抛出上面的错误。
 
一方面ngram需要对min -> max gram的范围做限制,一般就是几个。 另外一方面,ngram一般不用于对大段的文本做分析,他主要的用途是分析邮政编码,商品编码一类的数据。 大段文本应该使用其他分词器。

hubiao

赞同来自:

那我怎么修改下  <Lucene对于一个生成的token的大小上限是32k,然后分析文本的时候,用于存放token的内存缓冲区大小最大是2048MB, 因此缓冲区最多能缓存65536个token>  缓冲大小?
 
 
如果这种不可取,那我想要
文本:北京天安门
分词效果:


北京
北京天
北京天安
北京天安门




京天
京天安
京天安门



天安
天安门



安门



 
这样的分词效果,还有其他类似于 ngram,用于处理大文本的分词器吗?

kennywu76 - Wood

赞同来自:

ngram适合处理邮政编码,地名,车站名,等等这样的短文本。 
 
整段的大文本不适合这样处理,可以考虑使用ik一类的中文分词器。  但是此时搜索的时候是无法达到类似数据库里的like %xyz%这样的效果的,并且对于长文本,搜索应用通常也不是用like %%这样的方式检索,需要转变一下思维方式。
建议仔细阅读一下: https://www.elastic.co/guide/c ... .html 

hubiao

赞同来自:

Lucene对于一个生成的token的大小上限是32k,这个可以修改吗?如果能改大一些,是不是就支持大文本了

要回复问题请先登录注册