设置参数 `node.name` 可以自定义 Elasticsearch 节点的名字。 此条 Tips 由 medcl 贡献。
Elasitcsearch 搜索

Elasitcsearch 搜索

关于数字.字母的匹配问题

Elasticsearchsxwinter 回复了问题 • 5 人关注 • 6 个回复 • 5028 次浏览 • 2020-03-07 14:31 • 来自相关话题

我用i热更新 IK 分词以后关键词搜索就报这个错误,没有采用热更新之前还是好好的,这个该怎么办呀?哪位大神帮帮忙

Elasticsearchzz_hello 回复了问题 • 2 人关注 • 2 个回复 • 3122 次浏览 • 2018-10-15 10:37 • 来自相关话题

elasticsearch集群可以设置VIP吗?

Elasticsearchyayg2008 回复了问题 • 6 人关注 • 3 个回复 • 3455 次浏览 • 2018-04-08 09:39 • 来自相关话题

elasticsearch-hadoopp hive导入数据到es中的总是version conflict?

Elasticsearchzyb1994111 回复了问题 • 3 人关注 • 2 个回复 • 7014 次浏览 • 2018-04-03 10:23 • 来自相关话题

elasticsearch 聚合为空怎么能强行赋值

Elasticsearchstrglee 回复了问题 • 3 人关注 • 1 个回复 • 3894 次浏览 • 2018-04-02 14:17 • 来自相关话题

怎么判断一个id是否在一个时间段内没有出现过

Elasticsearchlaoyang360 回复了问题 • 2 人关注 • 1 个回复 • 1949 次浏览 • 2018-03-21 19:04 • 来自相关话题

elasticsearch可以先把搜索到的内容聚合,然后再在集合里写搜索吗,然后再把搜索到的结果再进行一次聚合

Elasticsearchluohuanfeng 回复了问题 • 2 人关注 • 1 个回复 • 2053 次浏览 • 2018-02-08 14:50 • 来自相关话题

es 多type 数据结合查询

回复

Elasticsearchsaga 发起了问题 • 1 人关注 • 0 个回复 • 3191 次浏览 • 2017-09-13 14:22 • 来自相关话题

关于elasticsearch的python api查询效率问题

回复

Elasticsearch丶Dik1s 发起了问题 • 1 人关注 • 0 个回复 • 3710 次浏览 • 2017-09-01 10:50 • 来自相关话题

es中的数据与数据库保持一致的问题

Elasticsearchlaoyang360 回复了问题 • 4 人关注 • 2 个回复 • 5612 次浏览 • 2017-08-28 07:42 • 来自相关话题

Lucene 6 基于BKD Tree Index 的应用

Elasticsearchkeehang 发表了文章 • 0 个评论 • 5787 次浏览 • 2017-08-04 10:20 • 来自相关话题

BKD Tree  https://www.elastic.co/blog/lucene-points-6.0 Block k-d trees are a simple yet powerful data structure. At index time, they are built by recursively partitioning the full space of N-dimensional points to be indexed into smaller and smaller rectangular cells, splitting equally along the widest ranging dimension at each step of the recursion. However, unlike an ordinary k-d tree, a block k-d tree stops recursing once there are fewer than a pre-specified (1024 in our case, by default) number of points in the cell. At that point, all points within that cell are written into one leaf block on disk and the starting file-pointer for that block is saved into an in-heap binary tree structure. In the 1D case, this is simply a full sort of all values, divided into adjacent leaf blocks. There are k-d tree variants that can support removing values, and rebalancing, but Lucene does not need these operations because of its write-once per-segment design.   At search time, the same recursion takes place, testing at each level whether the requested query shape intersects the left or right sub-tree of each dimensional split, and recursing if so. In the 1D case, the query shape is simply a numeric range whereas in the 2D and 3D cases, it is a geo-spatial shape (circle, ring, rectangle, polygon, cube, etc.).
测试集合:模拟一亿条
0," nnrIuS","raet","lnsr","inu ","saia",83.405273,73.302012,3991,24,"N"," usA","airport","rra i"
1,"omlritp","aaVe","y Mu","AaVV","NMc ",15.459643,-20.826241,2627,54,"a","eemo","airport","MaArp"
2,"kyaneMr","iasm","raAA"," tnt","inls",16.606066,38.663728,2761,53,"o","arIi","airport","uiron"
1. General Multidimensional Space Points    Search for points with exact given values.    Search for points which has one of the value from a given set of values.  Search for points within a given range.  Get the number of points which has exact point. Get the number of points within a given range. (Ranges are multidimensional ranges. In 3D, they are boxes.) Divide points into range-buckets and get the count in each buckets. (Range bucket is a range which has a label in it)   2. Locations on the planet surface. (Latitude, Longitude)   Find closest set of airports to a given town.     Find the set of airports within a given radius from a particular town.   Find the set of airports inside a country. (Country can be given as a polygon)    Find the set of airports within a given range of Latitudes and Longitudes. It is a Latitude, Longitude box query. (For a examples: Airports closer to the equatorial)    Find the set of airports closer to a given path. (Path can be something like a road. Find the airports which are less than 50km away from a given highway)   Count the airports in each country by giving country maps as polygons.   search  result:   Loading Data is finished ---------------------------------------------------------------------- 建索引花费时间:982ms LatLon - Box Query Example------------------------------------------------------------------------------ search_LatLon_Box 花费时间:69ms LatLon - K Nearest------------------------------------------------------------------------------ search_LatLon_Nearest 花费时间:108ms DoublePoint 1D Point Exact------------------------------------------------------------------------------ search_Double_1D_Exact 花费时间:10ms DoublePoint 1D - Range------------------------------------------------------------------------------ search_Double_1D_range 花费时间:8ms DoublePoint 1D - Range Buckets ----------------------------------------------------------------------------- search_Double_1D_range_bucket 花费时间:58ms DoublePoint multi dimensional - Range------------------------------------------------------------------------------ search_Double_MiltiDimensional_Range 花费时间:1ms      

es 返回文档中如何看是由哪个搜索词搜出的

Elasticsearchcolie 回复了问题 • 2 人关注 • 2 个回复 • 1976 次浏览 • 2017-08-03 16:07 • 来自相关话题

关于数字.字母的匹配问题

回复

Elasticsearchsxwinter 回复了问题 • 5 人关注 • 6 个回复 • 5028 次浏览 • 2020-03-07 14:31 • 来自相关话题

elasticsearch集群可以设置VIP吗?

回复

Elasticsearchyayg2008 回复了问题 • 6 人关注 • 3 个回复 • 3455 次浏览 • 2018-04-08 09:39 • 来自相关话题

elasticsearch-hadoopp hive导入数据到es中的总是version conflict?

回复

Elasticsearchzyb1994111 回复了问题 • 3 人关注 • 2 个回复 • 7014 次浏览 • 2018-04-03 10:23 • 来自相关话题

elasticsearch 聚合为空怎么能强行赋值

回复

Elasticsearchstrglee 回复了问题 • 3 人关注 • 1 个回复 • 3894 次浏览 • 2018-04-02 14:17 • 来自相关话题

怎么判断一个id是否在一个时间段内没有出现过

回复

Elasticsearchlaoyang360 回复了问题 • 2 人关注 • 1 个回复 • 1949 次浏览 • 2018-03-21 19:04 • 来自相关话题

elasticsearch可以先把搜索到的内容聚合,然后再在集合里写搜索吗,然后再把搜索到的结果再进行一次聚合

回复

Elasticsearchluohuanfeng 回复了问题 • 2 人关注 • 1 个回复 • 2053 次浏览 • 2018-02-08 14:50 • 来自相关话题

es 多type 数据结合查询

回复

Elasticsearchsaga 发起了问题 • 1 人关注 • 0 个回复 • 3191 次浏览 • 2017-09-13 14:22 • 来自相关话题

关于elasticsearch的python api查询效率问题

回复

Elasticsearch丶Dik1s 发起了问题 • 1 人关注 • 0 个回复 • 3710 次浏览 • 2017-09-01 10:50 • 来自相关话题

es中的数据与数据库保持一致的问题

回复

Elasticsearchlaoyang360 回复了问题 • 4 人关注 • 2 个回复 • 5612 次浏览 • 2017-08-28 07:42 • 来自相关话题

es 返回文档中如何看是由哪个搜索词搜出的

回复

Elasticsearchcolie 回复了问题 • 2 人关注 • 2 个回复 • 1976 次浏览 • 2017-08-03 16:07 • 来自相关话题

Lucene 6 基于BKD Tree Index 的应用

Elasticsearchkeehang 发表了文章 • 0 个评论 • 5787 次浏览 • 2017-08-04 10:20 • 来自相关话题

BKD Tree  https://www.elastic.co/blog/lucene-points-6.0 Block k-d trees are a simple yet powerful data structure. At index time, they are built by recursively partitioning the full space of N-dimensional points to be indexed into smaller and smaller rectangular cells, splitting equally along the widest ranging dimension at each step of the recursion. However, unlike an ordinary k-d tree, a block k-d tree stops recursing once there are fewer than a pre-specified (1024 in our case, by default) number of points in the cell. At that point, all points within that cell are written into one leaf block on disk and the starting file-pointer for that block is saved into an in-heap binary tree structure. In the 1D case, this is simply a full sort of all values, divided into adjacent leaf blocks. There are k-d tree variants that can support removing values, and rebalancing, but Lucene does not need these operations because of its write-once per-segment design.   At search time, the same recursion takes place, testing at each level whether the requested query shape intersects the left or right sub-tree of each dimensional split, and recursing if so. In the 1D case, the query shape is simply a numeric range whereas in the 2D and 3D cases, it is a geo-spatial shape (circle, ring, rectangle, polygon, cube, etc.).
测试集合:模拟一亿条
0," nnrIuS","raet","lnsr","inu ","saia",83.405273,73.302012,3991,24,"N"," usA","airport","rra i"
1,"omlritp","aaVe","y Mu","AaVV","NMc ",15.459643,-20.826241,2627,54,"a","eemo","airport","MaArp"
2,"kyaneMr","iasm","raAA"," tnt","inls",16.606066,38.663728,2761,53,"o","arIi","airport","uiron"
1. General Multidimensional Space Points    Search for points with exact given values.    Search for points which has one of the value from a given set of values.  Search for points within a given range.  Get the number of points which has exact point. Get the number of points within a given range. (Ranges are multidimensional ranges. In 3D, they are boxes.) Divide points into range-buckets and get the count in each buckets. (Range bucket is a range which has a label in it)   2. Locations on the planet surface. (Latitude, Longitude)   Find closest set of airports to a given town.     Find the set of airports within a given radius from a particular town.   Find the set of airports inside a country. (Country can be given as a polygon)    Find the set of airports within a given range of Latitudes and Longitudes. It is a Latitude, Longitude box query. (For a examples: Airports closer to the equatorial)    Find the set of airports closer to a given path. (Path can be something like a road. Find the airports which are less than 50km away from a given highway)   Count the airports in each country by giving country maps as polygons.   search  result:   Loading Data is finished ---------------------------------------------------------------------- 建索引花费时间:982ms LatLon - Box Query Example------------------------------------------------------------------------------ search_LatLon_Box 花费时间:69ms LatLon - K Nearest------------------------------------------------------------------------------ search_LatLon_Nearest 花费时间:108ms DoublePoint 1D Point Exact------------------------------------------------------------------------------ search_Double_1D_Exact 花费时间:10ms DoublePoint 1D - Range------------------------------------------------------------------------------ search_Double_1D_range 花费时间:8ms DoublePoint 1D - Range Buckets ----------------------------------------------------------------------------- search_Double_1D_range_bucket 花费时间:58ms DoublePoint multi dimensional - Range------------------------------------------------------------------------------ search_Double_MiltiDimensional_Range 花费时间:1ms