使用 nohup 或 disown 如果你要让某个进程运行在后台。

关于节点机器配置问题.

medcl 回复了问题 • 2 人关注 • 1 个回复 • 4987 次浏览 • 2016-04-03 20:12 • 来自相关话题

elasticsearch2.1.1如何创建数据库连接

回复

xingfaup 发起了问题 • 1 人关注 • 0 个回复 • 5246 次浏览 • 2016-03-31 17:50 • 来自相关话题

query_string里default_field带type前缀无法搜索出结果

medcl 回复了问题 • 2 人关注 • 1 个回复 • 5846 次浏览 • 2016-03-31 12:22 • 来自相关话题

setPostFilter不起作用

stab 回复了问题 • 4 人关注 • 2 个回复 • 5596 次浏览 • 2016-04-05 10:37 • 来自相关话题

关于模板合并的问题

回复

xiaohuojian 发起了问题 • 1 人关注 • 0 个回复 • 3987 次浏览 • 2016-03-30 20:58 • 来自相关话题

ElasticSearch插件集

kl 发表了文章 • 0 个评论 • 12892 次浏览 • 2016-03-30 18:07 • 来自相关话题

ElasticSearch的很多功能都是官方或第三方基于ElasticSearch的AbstractPlugin类实现的插件来提供的,所以,在里里记录下一些常用的及实用的插件地址,以备不时之需

分词插件

Combo Analysis Plugin (作者 Olivier Favre, Yakaz)

简介:组合分词器,可以把多个分词器的结果组合在一起。

Smart Chinese Analysis Plugin (作者 elasticsearch 团队)

简介:lucene默认的中文分词器

ICU Analysis plugin (作者 elasticsearch 团队)

简介:lucene自带的ICU分词,ICU是一套稳定、成熟、功能强大、轻便易用和跨平台支持Unicode 的开发包。

Stempel (Polish) Analysis plugin (作者 elasticsearch 团队)

简介:法文分词器

IK Analysis Plugin (作者 Medcl)

简介:大名鼎鼎的ik分词,都懂的!

Mmseg Analysis Plugin (作者 Medcl)

简介:mmseg中文分词

Hunspell Analysis Plugin (作者 Jörg Prante)

简介:lucene自带的Hunspell模块

Japanese (Kuromoji) Analysis plugin (作者 elasticsearch 团队).

简介:日文分词器

Japanese Analysis plugin (作者 suguru).

简介:日文分词器

Russian and English Morphological Analysis Plugin (作者 Igor Motov)

简介:俄文英文分词器

Pinyin Analysis Plugin (作者 Medcl)

简介:拼音分词器

String2Integer Analysis Plugin (作者 Medcl)

简介:字符串转整型工具。主要用在facet这个功能上,如果facet的field的值是字符串的话,计算起来比较耗资源。可以把字符串映射成整型,对整型进行facet操作要比对字符串的快很多。

同步插件

CouchDB River Plugin (作者 elasticsearch 团队)

简介:CouchDB和elasticsearch的同步插件

Wikipedia River Plugin (作者 elasticsearch 团队)

简介:wikipedia文件读取插件。wikipedia是维基百科的一个离线库,不定期发布最新数据,是以xml形式发布的。这个river读取这个文件来建索引。

Twitter River Plugin (作者 elasticsearch 团队)

简介:twitter的同步插件,可以同步你twitter上的微博。

RabbitMQ River Plugin (作者 elasticsearch 团队)

简介:rabbitmq同步插件,读取rabbitmq上的队列信息并索引。

RSS River Plugin (作者 David Pilato)

简介:定期索引指定一个或多个RSS源的数据。

MongoDB River Plugin (作者 Richard Louapre)

简介:mongodb同步插件,mongodb必须搭成副本集的模式,因为这个插件的原理是通过定期读取mongodb中的oplog来同步数据。

Open Archives Initiative (OAI) River Plugin (作者 Jörg Prante)

简介:可以索引oai数据提供者提供的数据。

Sofa River Plugin (作者 adamlofts)

简介:这个插件可以把多个CouchDB的数据库同步到同一个es索引中。

JDBC River Plugin (作者 Jörg Prante)

简介:关系型数据库的同步插件

FileSystem River Plugin (作者 David Pilato)

简介:本地文件系统文件同步插件,使用方法是指定一个本地目录路径,es会定期扫描索引该目录下的文件。

LDAP River Plugin (作者 Tanguy Leroux)

简介:索引LDAP目录下的文件数据。

Dropbox River Plugin (作者 David Pilato)

简介:索引dropbox网盘上的文件。通过oauth协议来调用dropbox上的api建索引。

ActiveMQ River Plugin (作者 Dominik Dorn)

简介:activemq队列的同步插件,和之前rabbitmq的类似

Solr River Plugin (作者 Luca Cavanna)

简介:solr同步插件,可以把solr里面的索引同步到es

CSV River Plugin (作者 Martin Bednar)

简介:通过指定目录地址来索引csv文件。

数据传输插件

Servlet transport (作者 elasticsearch 团队)

简介:Servlet rest插件,通过servlet来封装rest接口。

Memcached transport plugin (作者 elasticsearch 团队)

简介:本插件可以通过memcached协议进行rest接口的调用。注意:这里不是使用memcache作为es的缓存。

Thrift Transport (作者 elasticsearch 团队)

简介:使用thrift进行数据传输。

ZeroMQ transport layer plugin (作者 Tanguy Leroux)

简介:使用zeromq进rest接口的调用。

Jetty HTTP transport plugin (作者 Sonian Inc.)

简介:使用jetty来提供http rest接口。默认是使用netty。这个插件的好处是可以对http接口进行一些权限的设置。

脚本插件

Python language Plugin (作者 elasticsearch 团队)

简介:python脚本支持

JavaScript language Plugin (作者 elasticsearch 团队)

简介:javascript脚本支持

Groovy lang Plugin (作者 elasticsearch 团队)

简介:groovy脚本支持

Clojure Language Plugin (作者 Kevin Downey)

简介:clojure脚本支持

站点插件(以网页形式展现)

BigDesk Plugin (作者 Lukáš Vlček)

简介:监控es状态的插件,推荐!

Elasticsearch Head Plugin (作者 Ben Birch)

简介:很方便对es进行各种操作的客户端。

Paramedic Plugin (作者 Karel Minařík)

简介:es监控插件

SegmentSpy Plugin (作者 Zachary Tong)

简介:查看es索引segment状态的插件

Inquisitor Plugin (作者 Zachary Tong)

简介:这个插件主要用来调试你的查询。

其它插件

Mapper Attachments Type plugin (作者 elasticsearch 团队)

简介:附件类型插件,通过tika库把各种类型的文件格式解析成字符串。

Hadoop Plugin (作者 elasticsearch team)

简介:hadoop和elasticsearch的集成插件,可以通过hadoop的mapreduce算法来并行建立索引,同时支持cascading,hive和pig等框架。

AWS Cloud Plugin (作者 elasticsearch 团队)

简介:elasticsearch与amazon web services的集成。

ElasticSearch Mock Solr Plugin (作者 Matt Weber)

简介:elasticsearch的solr api接口。用了这个插件可以使用solr的api来调用es,直接用solrj就可以调用es。比较适用于从solr转es时暂时过度。

Suggester Plugin (作者 Alexander Reelsen)

简介:es 搜索提示功能插件,不过es0.9版本后自带了这个功能,

ElasticSearch PartialUpdate Plugin (作者 Medcl)

简介:elasticsearch的部分更新插件。

ZooKeeper Discovery Plugin (作者 Sonian Inc.)

简介:通过zookeeper管理集群的插件。通过这个插件,es的分布式架构和solrcloud相似。

ElasticSearch Changes Plugin (作者 Thomas Peuss)

简介:elasticsearch索引操作记录插件。通过这个插件可以查看用户对索引的增删改操作。

ElasticSearch View Plugin (作者 Tanguy Leroux)

简介:这个插件可以把es的文档以html,xml或text的方式显示出来,它也可以通过查询生成web页面。

ElasticSearch New Relic Plugin (作者 Vinicius Carvalho)

简介:elasticsearch和newrelic的集成插件。newrelica是一个性能监控工具。这个插件会把节点的状态数据传到newrelic的账号上。
社区的编辑器好像不支持复制富文本信息,所以插件都没有链接,插件太多懒得一个个打链接了,想点地址的可以移步寒舍http://www.kailing.pub/article/index/arcid/87.html
 

在linux安装elasticsearch2.1.1安装结束后启动报skipping exporter [default_local] as it isn't ready yet

shandian811 回复了问题 • 4 人关注 • 3 个回复 • 10597 次浏览 • 2017-11-29 11:12 • 来自相关话题

es 中文搜索解决一丢丢

回复

Mr_Chen 回复了问题 • 1 人关注 • 1 个回复 • 4333 次浏览 • 2016-03-30 16:11 • 来自相关话题

elasticsearch 怎么实现模糊匹配

xiaorong 回复了问题 • 9 人关注 • 7 个回复 • 33245 次浏览 • 2017-09-29 12:43 • 来自相关话题

elasticsearch https访问

kl 回复了问题 • 2 人关注 • 1 个回复 • 5263 次浏览 • 2016-03-30 17:23 • 来自相关话题

failed to find analyzer type [mmseg_maxword] or tokenizer

zplzpl 回复了问题 • 5 人关注 • 4 个回复 • 9317 次浏览 • 2016-06-27 17:03 • 来自相关话题

java爬虫爬取Elastic中文社区用作es测试数据

kl 发表了文章 • 1 个评论 • 7902 次浏览 • 2016-03-29 23:10 • 来自相关话题

前言
为了测试es的完美功能,笔者使用爬虫爬取了Elastic中文社区和CSDN的大量数据,作为测试之用,下面简单介绍一下折腾的过程
认识 WebCollector
WebCollector是一个无须配置、便于二次开发的JAVA爬虫框架(内核),它提供精简的的API,只需少量代码即可实现一个功能强大的爬虫。WebCollector-Hadoop是WebCollector的Hadoop版本,支持分布式爬取。
WebCollector致力于维护一个稳定、可扩的爬虫内核,便于开发者进行灵活的二次开发。内核具有很强的扩展性,用户可以在内核基础上开发自己想要的爬虫。源码中集成了Jsoup,可进行精准的网页解析。2.x版本中集成了selenium,可以处理javascript生成的数据。
官网地址:http://crawlscript.github.io/WebCollector/
使用步骤
导入jar依赖,笔者是maven项目,所有加入如下pom.xml依赖
ps:笔者这里是使用的最新版的,maven仓库目前最新版的是2.09,所以使用最新的就自己下载打包吧 
环境有了后,直接新建一个类继承BreadthCrawler类重新​visit方法,你的处理逻辑都在visit方法里面,下面楼主贴下我的代码
​爬取Elastic中文社区资源
/**
* Created by 小陈 on 2016/3/29.
*/
@Component
public class ElasticCrawler extends BreadthCrawler {
@Autowired
IpaDao ipaDao;
public ElasticCrawler() {
super("crawl", true);
/*start page*/
this.addSeed("xxx");
/*fetch url like http://news.hfut.edu.cn/show-xxxxxxhtml*/
this.addRegex("xxx");
/*do not fetch jpg|png|gif*/
this.addRegex("-.*\\.(jpg|png|gif).*");
/*do not fetch url contains #*/
// this.addRegex("-.*#.*");
}
@Override
public void visit(Page page, CrawlDatums next) {
String url = page.getUrl();
String content="";
try {
content = ContentExtractor.getContentByUrl(url);
}catch (Exception e){
e.printStackTrace();
}
/*抽取标题*/
String title=page.getDoc().title();
System.out.println("-------------------->"+title);
if(!title.isEmpty() && ! content.isEmpty()){
Pa pa=new Pa(title,content);
ipaDao.save(pa);//持久化到数据库
}
}
爬取CSDN资源
/**
* @author kl by 2016/3/29
* @boke www.kailing.pub
*/
@Component
public class CSDNCrawler extends BreadthCrawler {
@Autowired
IpaDao ipaDao;
public CSDNCrawler() {
super("crawl", true);
/*start page*/
this.addSeed("http://blog.csdn.net/.*");//添加种子地址
/*fetch url like http://news.hfut.edu.cn/show-xxxxxxhtml*/
this.addRegex("http://blog.csdn.net/.*/article/details/.*");
/*do not fetch jpg|png|gif*/
this.addRegex("-.*\\.(jpg|png|gif).*");
/*do not fetch url contains #*/
// this.addRegex("-.*#.*");
}
@Override
public void visit(Page page, CrawlDatums next) {
String url = page.getUrl();
String content="";
try {
content = ContentExtractor.getContentByUrl(url);
}catch (Exception e){
e.printStackTrace();
}
if (page.matchUrl("http://blog.csdn.net/.*/article/details/.*")) {
String title = page.select("div[class=article_title]").first().text();
String author = page.select("div[id=blog_userface]").first().text();//获取作者名
System.out.println("title:" + title + "\tauthor:" + author);
if(!title.isEmpty() && ! content.isEmpty()){
Pa pa=new Pa(title,content);
ipaDao.save(pa);
}
}
}
ps:Elastic中文社区的爬取规则和谐了,楼主是爱社区的,大家可以放心的爬CSDN吧,WebCollector功能很强大,爬虫的一个关键就是需要知道网站的url规则,有兴趣的可以研究​ 下,Elastic的数据不多,分吧钟就够了,CSDN爬了5,6分钟,没有做深度的爬,取了大概二三十万的数据样子,只取标题和正文 
 
去我博客查看原文 http://www.kailing.pub/article/index/arcid/86.html
下面是导入数据的截图

QQ图片20160329221750.png


QQ图片20160329221921.png

 

怎么关闭Elasticsearch服务

guoyiqin 回复了问题 • 5 人关注 • 4 个回复 • 9454 次浏览 • 2016-04-06 17:06 • 来自相关话题

通过elasticsearch head插件,无法关闭服务器

owen 回复了问题 • 3 人关注 • 3 个回复 • 5786 次浏览 • 2016-03-30 15:37 • 来自相关话题

java使用HTTP Rest client 客户端Jest连接操作es,功能很强大

kl 发表了文章 • 6 个评论 • 26884 次浏览 • 2016-03-28 23:30 • 来自相关话题

前言

在了解jest框架前,楼主一直尝试用官方的Elasticsearch java api连接es服务的,可是,不知何故,一直报如下的异常信息,谷歌了很久,都说是jvm版本不一致导致的问题,可我是本地测试的,jvm肯定是一致的,这个问题现在都木有解决,but,这怎么能阻止我探索es的脚步呢,so,让我发现了jest 这个框架   


org.elasticsearch.transport.RemoteTransportException: Failed to deserialize exception response from stream Caused by: org.elasticsearch.transport.TransportSerializationException: Failed to deserialize exception response from stream
我的测试代码是参考官方api实例的,官方api地址:Elasticsearch java api,代码如下:



Client client = new TransportClient().addTransportAddress(new InetSocketTransportAddress("127.0.0.1", 9300)); QueryBuilder queryBuilder = QueryBuilders.termQuery("content", "搜"); SearchResponse searchResponse = client.prepareSearch("indexdata").setTypes("fulltext") .setQuery(queryBuilder) .execute() .actionGet(); SearchHits hits = searchResponse.getHits(); System.out.println("查询到记录数:" + hits.getTotalHits()); SearchHit[] searchHists = hits.getHits(); for(SearchHit sh : searchHists){ System.out.println("content:"+sh.getSource().get("content")); } client.close();
如果有人知道怎么回事,告诉一下楼主吧,让楼主坑的明白,感激不尽了,我的es版本是2.2.0


进入正题

了解jest

jest是一个基于 HTTP Rest 的连接es服务的api工具集,功能强大,能够使用es java api的查询语句,项目是开源的,github地址:https://github.com/searchbox-io/Jest




我的测试用例

分词器:ik,分词器地址:https://github.com/medcl/elasticsearch-analysis-ik ,es的很多功能都是基于插件提供的,es版本升级都2.2.0后,安装插件的方式不一样了,如果你安装ik分词插件有问题,请点击右上角的qq联系博主

新建索引

curl -XPUT http://localhost:9200/indexdata


创建索引的mapping,指定分词器

curl -XPOST http://localhost:9200/indexdata/fulltext/_mapping

{
  "fulltext": {
    "_all": {
      "analyzer": "ik_max_word",
      "search_analyzer": "ik_max_word",
      "term_vector": "no",
      "store": "false"
    },
    "properties": {
      "content": {
        "type": "string",
        "store": "no",
        "term_vector": "with_positions_offsets",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_max_word",
        "include_in_all": "true",
        "boost": 8
      },
      "description": {
        "type": "string",
        "store": "no",
        "term_vector": "with_positions_offsets",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_max_word",
        "include_in_all": "true",
        "boost": 8
      },
      "title": {
        "type": "string",
        "store": "no",
        "term_vector": "with_positions_offsets",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_max_word",
        "include_in_all": "true",
        "boost": 8
      },
      "keyword": {
        "type": "string",
        "store": "no",
        "term_vector": "with_positions_offsets",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_max_word",
        "include_in_all": "true",
        "boost": 8
      }
    }
  }
}

mapping信息可以用head插件查看,如下


导入数据和查询,看代码吧


@RunWith(SpringJUnit4ClassRunner.class) @SpringApplicationConfiguration(classes = ElasticSearchTestApplication.class) public class JestTestApplicationTests { @Autowired private KlarticleDao klarticleDao; //得到JestClient实例 public JestClient getClient()throws Exception{ JestClientFactory factory = new JestClientFactory(); factory.setHttpClientConfig(new HttpClientConfig .Builder("http://127.0.0.1:9200&quot;) .multiThreaded(true) .build()); return factory.getObject(); } /** * 导入数据库数据到es * @throws Exception */ @Test public void contextLoads() throws Exception{ JestClient client=getClient(); Listlists=klarticleDao.findAll(); for(Klarticle k:lists){ Index index = new Index.Builder(k).index("indexdata").type("fulltext").id(k.getArcid()+"").build(); System.out.println("添加索引----》"+k.getTitle()); client.execute(index); } //批量新增的方式,效率更高 Bulk.Builder bulkBuilder = new Bulk.Builder(); for(Klarticle k:lists){ Index index = new Index.Builder(k).index("indexdata").type("fulltext").id(k.getArcid()+"").build(); bulkBuilder.addAction(index); } client.execute(bulkBuilder.build()); client.shutdownClient(); } //搜索测试 @Test public void JestSearchTest()throws Exception{ SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(QueryBuilders.matchQuery("content", "搜索")); Search search = new Search.Builder(searchSourceBuilder.toString()) // multiple index or types can be added. .addIndex("indexdata") .build(); JestClient client =getClient(); SearchResult result= client.execute(search); // List> hits = result.getHits(Klarticle.class); Listarticles = result.getSourceAsObjectList(Klarticle.class); for(Klarticle k:articles){ System.out.println("------->:"+k.getTitle()); } } }下面是依赖的jar,maven项目<!--jest依赖--> <dependency> <groupId>io.searchbox</groupId> <artifactId>jest</artifactId> <version>2.0.0</version> </dependency> <!--jest 日志依赖--> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>2.2.0</version> </dependency> </dependencies>
去我的博客查看原文:http://www.kailing.pub/article/index/arcid/84.html