hadoop
HDFS 定期写入文件,存入elasticsearch实现全文检索
Elasticsearch • laoyang360 回复了问题 • 5 人关注 • 3 个回复 • 4536 次浏览 • 2019-08-16 13:05
repository-hdfs kerberos认证问题
Elasticsearch • printf_uck 回复了问题 • 4 人关注 • 1 个回复 • 5839 次浏览 • 2019-02-12 09:33
使用 ES-Hadoop 将 Spark Streaming 流数据写入 ES
Elasticsearch • rochy 发表了文章 • 5 个评论 • 8103 次浏览 • 2019-01-06 00:55
本文将详细介绍利用 ES-Hadoop 将 Spark 处理的数据写入到 ES 中。
一、开发环境
1、组件版本
- CDH 集群版本:6.0.1
- Spark 版本:2.2.0
- Kafka 版本:1.0.1
- ES 版本:6.5.1
2、Maven 依赖
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
<!-- spark 基础依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- spark-streaming 相关依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- spark-streaming-kafka 相关依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- zookeeper 相关依赖 -->
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.4.5-cdh6.0.1</version>
</dependency>
<!-- Spark-ES 相关依赖 -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>6.5.4</version>
</dependency>
<!-- Spark-ES 依赖的 HTTP 传输组件 -->
<dependency>
<groupId>commons-httpclient</groupId>
<artifactId>commons-httpclient</artifactId>
<version>3.1</version>
</dependency>
3、注意事项
如果使用 CDH 版本的 Spark,则在调试及实际部署运行的时候会出现下面的错误:
java.lang.ClassNotFoundException: org.apache.commons.httpclient.protocol.Protocol
很显然是缺少 httpclient 相关依赖造成的,对比开源版本与 CDH 版本的 Spark,发现开源版本多出了 commons-httpclient-3.1.jar
,因此上述 Maven 的 pom 文件添加上对其依赖即可。
二、ES-Hadoop
1、简介
ES-Hadoop 实现了 Hadoop 生态(Hive、Spark、Pig、Storm 等)与 ElasticSearch 之间的数据交互,借助该组件可以将 Hadoop 生态的数据写入到 ES 中,然后借助 ES 对数据快速进行搜索、过滤、聚合等分析,进一步可以通过 Kibana 来实现数据的可视化。
同时,也可以借助 ES 作为数据存储层(类似数仓的 Stage 层或者 ODS 层),然后借助 Hadoop 生态的数据处理工具(Hive、MR、Spark 等)将处理后的数据写入到 HDFS 中。
使用 ES 做为原始数据的存储层,可以很好的进行数据去重、数据质量分析,还可以提供一些即时的数据服务,例如趋势展示、汇总分析等。
2、组成
ES-Hadoop 是一个整合性质的组件,它封装了 Hadoop 生态的多种组件与 ES 交互的 API,如果你只需要部分功能,可以使用细分的组件:
- elasticsearch-hadoop-mr
- elasticsearch-hadoop-hive
- elasticsearch-hadoop-pig
- elasticsearch-spark-20_2.10
- elasticsearch-hadoop-cascading
- elasticsearch-storm
三、elasticsearch-spark
1、配置
es-hadoop 核心是通过 es 提供的 restful 接口来进行数据交互,下面是几个重要配置项,更多配置信息请参阅官方说明:
es.nodes
:需要连接的 es 节点(不需要配置全部节点,默认会自动发现其他可用节点);es.port
:节点 http 通讯端口;es.nodes.discovery
:默认为 true,表示自动发现集群可用节点;es.nodes.wan.only
:默认为 false,设置为 true 之后,会关闭节点的自动 discovery,只使用es.nodes
声明的节点进行数据读写操作;如果你需要通过域名进行数据访问,则设置该选项为 true,否则请务必设置为 false;es.index.auto.create
:是否自动创建不存在的索引,默认为 true;es.net.http.auth.user
:Basic 认证的用户名;es.net.http.auth.pass
:Basic 认证的密码。
val conf = new SparkConf().setIfMissing("spark.app.name","rt-data-loader").setIfMissing("spark.master", "local[5]")
conf.set(ConfigurationOptions.ES_NODES, esNodes)
conf.set(ConfigurationOptions.ES_PORT, esPort)
conf.set(ConfigurationOptions.ES_NODES_WAN_ONLY, "true")
conf.set(ConfigurationOptions.ES_INDEX_AUTO_CREATE, "true")
conf.set(ConfigurationOptions.ES_NODES_DISCOVERY, "false")
conf.set(ConfigurationOptions.ES_NET_HTTP_AUTH_USER, esUser)
conf.set(ConfigurationOptions.ES_NET_HTTP_AUTH_PASS, esPwd)
conf.set("es.write.rest.error.handlers", "ignoreConflict")
conf.set("es.write.rest.error.handler.ignoreConflict", "com.jointsky.bigdata.handler.IgnoreConflictsHandler")
特别需要注意的配置项为 es.nodes.wan.only
,由于在云服务器环境中,配置文件使用的一般为内网地址,而本地调试的时候一般使用外网地址,这样将 es.nodes
配置为外网地址后,最后会出现节点找不到的问题(由于会使用节点配置的内网地址去进行连接):
org.elasticsearch.hadoop.EsHadoopIllegalArgumentException: No data nodes with HTTP-enabled available;
node discovery is disabled and none of nodes specified fit the criterion [xxx.xx.x.xx:9200]
此时将 es.nodes.wan.only
设置为 true 即可。推荐开发测试时使用域名,集群部署的时候将该选项置为 false。
2、屏蔽写入冲突
如果数据存在重复,写入 ES 时往往会出现数据写入冲突的错误,此时有两种解决方法。
方法一:设置 es.write.operation
为 upsert,这样达到的效果为如果存在则更新,不存在则进行插入,该配置项默认值为 index。
方法二:自定义冲突处理类,类似上述配置中设置了自定义的 error.handlers
,通过自定义类来处理相关错误,例如忽略冲突等:
public class IgnoreConflictsHandler extends BulkWriteErrorHandler {
public HandlerResult onError(BulkWriteFailure entry, DelayableErrorCollector<byte[]> collector) throws Exception {
if (entry.getResponseCode() == 409) {
StaticLog.warn("Encountered conflict response. Ignoring old data.");
return HandlerResult.HANDLED;
}
return collector.pass("Not a conflict response code.");
}
}
方法二可以屏蔽写入版本比预期的小之类的版本冲突问题。
3、RDD 写入 ES
EsSpark 提供了两种主要方法来实现数据写入:
saveToEs
:RDD 内容为Seq[Map]
,即一个 Map 对象集合,每个 Map 对应一个文档;saveJsonToEs
:RDD 内容为Seq[String]
,即一个 String 集合,每个 String 是一个 JSON 字符串,代表一条记录(对应 ES 的 _source)。
数据写入可以指定很多配置信息,例如:
es.resource
:设置写入的索引和类型,索引和类型名均支持动态变量;es.mapping.id
:设置文档 _id 对应的字段名;es.mapping.exclude
:设置写入时忽略的字段,支持通配符。
val itemRdd = rdd.flatMap(line => {
val topic = line.topic()
println("正在处理:" + topic + " - " + line.partition() + " : " + line.offset())
val jsonArray = JSON.parseArray(line.value()).toJavaList(classOf[JSONObject]).asScala
val resultMap = jsonArray.map(jsonObj =>{
var tmpId = "xxx"
var tmpIndex = "xxxxxx"
jsonObj.put("myTmpId", tmpId)
jsonObj.put("myTmpIndex", tmpIndex)
jsonObj.getInnerMap
})
resultMap
})
val mapConf = Map(
("es.resource" , "{myTmpIndex}/doc"),
("es.write.operation" , "upsert"),
("es.mapping.id" , "myTmpId"),
("es.mapping.exclude" , "myTmp*")
)
EsSpark.saveToEs(itemRdd, mapConf)
es.mapping.exclude
只支持 RDD 为 Map 集合(saveToEs),当为 Json 字符串集合时(saveJsonToEs)会提示不支持的错误信息;这个配置项非常有用,例如 myTmpId 作为文档 id,因此没有必要重复存储到 _source 里面了,可以配置到这个配置项,将其从 _source 中排除。
Any Code,Code Any!
扫码关注『AnyCode』,编程路上,一起前行。
elasticsearch-hadoopp hive导入数据到es中的总是version conflict?
Elasticsearch • zyb1994111 回复了问题 • 3 人关注 • 2 个回复 • 7101 次浏览 • 2018-04-03 10:23
kafka 添加kerberos认证
默认分类 • medcl 回复了问题 • 2 人关注 • 1 个回复 • 6754 次浏览 • 2018-02-10 12:27
kakfa 添加kerberos认证 启动报错
默认分类 • locatelli 回复了问题 • 3 人关注 • 2 个回复 • 10860 次浏览 • 2018-02-09 05:23
ElasticSearch-Hadoop的目標是什麼呢??
Elasticsearch • chym 回复了问题 • 12 人关注 • 6 个回复 • 23832 次浏览 • 2017-08-23 15:13
【阿里巴巴】【急聘】高级搜索研发专家
求职招聘 • jaredguo 发表了文章 • 0 个评论 • 5123 次浏览 • 2017-08-03 16:18
elk 与 hadoop 集成正确应用场景?
Elasticsearch • medcl 回复了问题 • 3 人关注 • 4 个回复 • 11603 次浏览 • 2017-07-25 23:53
技术上来说elasticsearch-Hadoop实现了Hadoop的读写接口,翻译es的查询到Hadoop的map-reduce,job,这样可以通过es来直接查询Hadoop里面的数据。
HDFS之前可以作为elasticsearch的gateway,1.0之后也能当做snapshot的存储,用来做索引备份,方便恢复数据。
HDFS 定期写入文件,存入elasticsearch实现全文检索
回复Elasticsearch • laoyang360 回复了问题 • 5 人关注 • 3 个回复 • 4536 次浏览 • 2019-08-16 13:05
repository-hdfs kerberos认证问题
回复Elasticsearch • printf_uck 回复了问题 • 4 人关注 • 1 个回复 • 5839 次浏览 • 2019-02-12 09:33
elasticsearch-hadoopp hive导入数据到es中的总是version conflict?
回复Elasticsearch • zyb1994111 回复了问题 • 3 人关注 • 2 个回复 • 7101 次浏览 • 2018-04-03 10:23
ElasticSearch-Hadoop的目標是什麼呢??
回复Elasticsearch • chym 回复了问题 • 12 人关注 • 6 个回复 • 23832 次浏览 • 2017-08-23 15:13
elk 与 hadoop 集成正确应用场景?
回复Elasticsearch • medcl 回复了问题 • 3 人关注 • 4 个回复 • 11603 次浏览 • 2017-07-25 23:53
使用 ES-Hadoop 将 Spark Streaming 流数据写入 ES
Elasticsearch • rochy 发表了文章 • 5 个评论 • 8103 次浏览 • 2019-01-06 00:55
本文将详细介绍利用 ES-Hadoop 将 Spark 处理的数据写入到 ES 中。
一、开发环境
1、组件版本
- CDH 集群版本:6.0.1
- Spark 版本:2.2.0
- Kafka 版本:1.0.1
- ES 版本:6.5.1
2、Maven 依赖
<!-- scala -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
<!-- spark 基础依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- spark-streaming 相关依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- spark-streaming-kafka 相关依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.2.0</version>
</dependency>
<!-- zookeeper 相关依赖 -->
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.4.5-cdh6.0.1</version>
</dependency>
<!-- Spark-ES 相关依赖 -->
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch-spark-20_2.11</artifactId>
<version>6.5.4</version>
</dependency>
<!-- Spark-ES 依赖的 HTTP 传输组件 -->
<dependency>
<groupId>commons-httpclient</groupId>
<artifactId>commons-httpclient</artifactId>
<version>3.1</version>
</dependency>
3、注意事项
如果使用 CDH 版本的 Spark,则在调试及实际部署运行的时候会出现下面的错误:
java.lang.ClassNotFoundException: org.apache.commons.httpclient.protocol.Protocol
很显然是缺少 httpclient 相关依赖造成的,对比开源版本与 CDH 版本的 Spark,发现开源版本多出了 commons-httpclient-3.1.jar
,因此上述 Maven 的 pom 文件添加上对其依赖即可。
二、ES-Hadoop
1、简介
ES-Hadoop 实现了 Hadoop 生态(Hive、Spark、Pig、Storm 等)与 ElasticSearch 之间的数据交互,借助该组件可以将 Hadoop 生态的数据写入到 ES 中,然后借助 ES 对数据快速进行搜索、过滤、聚合等分析,进一步可以通过 Kibana 来实现数据的可视化。
同时,也可以借助 ES 作为数据存储层(类似数仓的 Stage 层或者 ODS 层),然后借助 Hadoop 生态的数据处理工具(Hive、MR、Spark 等)将处理后的数据写入到 HDFS 中。
使用 ES 做为原始数据的存储层,可以很好的进行数据去重、数据质量分析,还可以提供一些即时的数据服务,例如趋势展示、汇总分析等。
2、组成
ES-Hadoop 是一个整合性质的组件,它封装了 Hadoop 生态的多种组件与 ES 交互的 API,如果你只需要部分功能,可以使用细分的组件:
- elasticsearch-hadoop-mr
- elasticsearch-hadoop-hive
- elasticsearch-hadoop-pig
- elasticsearch-spark-20_2.10
- elasticsearch-hadoop-cascading
- elasticsearch-storm
三、elasticsearch-spark
1、配置
es-hadoop 核心是通过 es 提供的 restful 接口来进行数据交互,下面是几个重要配置项,更多配置信息请参阅官方说明:
es.nodes
:需要连接的 es 节点(不需要配置全部节点,默认会自动发现其他可用节点);es.port
:节点 http 通讯端口;es.nodes.discovery
:默认为 true,表示自动发现集群可用节点;es.nodes.wan.only
:默认为 false,设置为 true 之后,会关闭节点的自动 discovery,只使用es.nodes
声明的节点进行数据读写操作;如果你需要通过域名进行数据访问,则设置该选项为 true,否则请务必设置为 false;es.index.auto.create
:是否自动创建不存在的索引,默认为 true;es.net.http.auth.user
:Basic 认证的用户名;es.net.http.auth.pass
:Basic 认证的密码。
val conf = new SparkConf().setIfMissing("spark.app.name","rt-data-loader").setIfMissing("spark.master", "local[5]")
conf.set(ConfigurationOptions.ES_NODES, esNodes)
conf.set(ConfigurationOptions.ES_PORT, esPort)
conf.set(ConfigurationOptions.ES_NODES_WAN_ONLY, "true")
conf.set(ConfigurationOptions.ES_INDEX_AUTO_CREATE, "true")
conf.set(ConfigurationOptions.ES_NODES_DISCOVERY, "false")
conf.set(ConfigurationOptions.ES_NET_HTTP_AUTH_USER, esUser)
conf.set(ConfigurationOptions.ES_NET_HTTP_AUTH_PASS, esPwd)
conf.set("es.write.rest.error.handlers", "ignoreConflict")
conf.set("es.write.rest.error.handler.ignoreConflict", "com.jointsky.bigdata.handler.IgnoreConflictsHandler")
特别需要注意的配置项为 es.nodes.wan.only
,由于在云服务器环境中,配置文件使用的一般为内网地址,而本地调试的时候一般使用外网地址,这样将 es.nodes
配置为外网地址后,最后会出现节点找不到的问题(由于会使用节点配置的内网地址去进行连接):
org.elasticsearch.hadoop.EsHadoopIllegalArgumentException: No data nodes with HTTP-enabled available;
node discovery is disabled and none of nodes specified fit the criterion [xxx.xx.x.xx:9200]
此时将 es.nodes.wan.only
设置为 true 即可。推荐开发测试时使用域名,集群部署的时候将该选项置为 false。
2、屏蔽写入冲突
如果数据存在重复,写入 ES 时往往会出现数据写入冲突的错误,此时有两种解决方法。
方法一:设置 es.write.operation
为 upsert,这样达到的效果为如果存在则更新,不存在则进行插入,该配置项默认值为 index。
方法二:自定义冲突处理类,类似上述配置中设置了自定义的 error.handlers
,通过自定义类来处理相关错误,例如忽略冲突等:
public class IgnoreConflictsHandler extends BulkWriteErrorHandler {
public HandlerResult onError(BulkWriteFailure entry, DelayableErrorCollector<byte[]> collector) throws Exception {
if (entry.getResponseCode() == 409) {
StaticLog.warn("Encountered conflict response. Ignoring old data.");
return HandlerResult.HANDLED;
}
return collector.pass("Not a conflict response code.");
}
}
方法二可以屏蔽写入版本比预期的小之类的版本冲突问题。
3、RDD 写入 ES
EsSpark 提供了两种主要方法来实现数据写入:
saveToEs
:RDD 内容为Seq[Map]
,即一个 Map 对象集合,每个 Map 对应一个文档;saveJsonToEs
:RDD 内容为Seq[String]
,即一个 String 集合,每个 String 是一个 JSON 字符串,代表一条记录(对应 ES 的 _source)。
数据写入可以指定很多配置信息,例如:
es.resource
:设置写入的索引和类型,索引和类型名均支持动态变量;es.mapping.id
:设置文档 _id 对应的字段名;es.mapping.exclude
:设置写入时忽略的字段,支持通配符。
val itemRdd = rdd.flatMap(line => {
val topic = line.topic()
println("正在处理:" + topic + " - " + line.partition() + " : " + line.offset())
val jsonArray = JSON.parseArray(line.value()).toJavaList(classOf[JSONObject]).asScala
val resultMap = jsonArray.map(jsonObj =>{
var tmpId = "xxx"
var tmpIndex = "xxxxxx"
jsonObj.put("myTmpId", tmpId)
jsonObj.put("myTmpIndex", tmpIndex)
jsonObj.getInnerMap
})
resultMap
})
val mapConf = Map(
("es.resource" , "{myTmpIndex}/doc"),
("es.write.operation" , "upsert"),
("es.mapping.id" , "myTmpId"),
("es.mapping.exclude" , "myTmp*")
)
EsSpark.saveToEs(itemRdd, mapConf)
es.mapping.exclude
只支持 RDD 为 Map 集合(saveToEs),当为 Json 字符串集合时(saveJsonToEs)会提示不支持的错误信息;这个配置项非常有用,例如 myTmpId 作为文档 id,因此没有必要重复存储到 _source 里面了,可以配置到这个配置项,将其从 _source 中排除。
Any Code,Code Any!
扫码关注『AnyCode』,编程路上,一起前行。
【阿里巴巴】【急聘】高级搜索研发专家
求职招聘 • jaredguo 发表了文章 • 0 个评论 • 5123 次浏览 • 2017-08-03 16:18