你不会是程序猿吧?

Day7: hangout 替代 logstash-input-kafka

Advent三斗室 发表了文章 • 2 个评论 • 12973 次浏览 • 2015-12-08 00:54 • 来自相关话题

用 Logstash 接收 Kafka 里的业务日志再写入 Elasticsearch 已经成为一个常见的选择。但是大多数人随后就会碰到一个问题:logstash-input-kafka 的性能上不去!

这个问题,主要是由于 Logstash 用 JRuby 实现,所以数据从 Kafka 下来到最后流转进 Logstash 里,要经过四五次 Ruby 和 Java 之间的数据结构转换,大大浪费和消耗了 CPU 资源。作为优化,我们可以通过修改默认的 logstash-input-kafka 的 codec 配置为 line,把 Jrjackson 处理流程挪到 logstash-filter-json 里多线程处理,但是也只能提高一倍性能而已。

Logstash 开发组目前也在实现纯 Java 版的 logstash-core-event,但是最终能提高多少,也是未知数。

那么在 Logstash 性能提上去之前,围绕 Kafka 还有什么办法能高效又不失灵活的做到数据处理并写入 Elasticsearch 呢?今天给大家推荐一下携程网开源的 hangout

hangout 采用 YAML 格式配置语法,跟 Elasticsearch 一样,省去了 Logstash 解析 DSL 的复杂度。下面一段配置是 repo 中自带的 example 示例:
inputs:
- Kafka:
codec: plain
encoding: UTF8 # defaut UTF8
topic:
app: 2
consumer_settings:
group.id: hangout
zookeeper.connect: 192.168.1.200:2181
auto.commit.interval.ms: "1000"
socket.receive.buffer.bytes: "1048576"
fetch.message.max.bytes: "1048576"
num.consumer.fetchers: "4"
- Kafka:
codec: json
topic:
web: 1
consumer_settings:
group.id: hangout
zookeeper.connect: 192.168.1.201:2181
auto.commit.interval.ms: "5000"

filters:
- Grok:
match:
- '^(?<logtime>\S+) (?<user>.+) (-|(?<level>\w+)) %{DATA:msg}$'
remove_fields: ['message']
- Add:
fields:
test: 'abcd'
if:
- '<#if message??>true</#if>'
- '<#if message?contains("liu")>true<#elseif message?contains("warn")>true</#if>'
- Date:
src: logtime
formats:
- 'ISO8601'
remove_fields: ['logtime']
- Lowercase:
fields: ['user']
- Add:
fields:
me: 'I am ${user}'
- Remove:
fields:
- logtime
- Trim:
fields:
- user
- Rename:
fields:
me: he
user: she
- Gsub:
fields:
she: ['c','CCC']
he: ['(^\w+)|(\w+$)','XXX']
- Translate:
source: user
target: nick
dictionary_path: /tmp/app.dic
- KV:
source: msg
target: kv
field_split: ' '
value_split: '='
trim: '\t\"'
trimkey: '\"'
include_keys: ["a","b","xyz","12"]
exclude_keys: ["b","c"] # b in excluded
tag_on_failure: "KVfail"
remove_fields: ['msg']
- Convert:
fields:
cs_bytes: integer
time_taken: float
- URLDecode:
fields: ["query1","query2"]

outputs:
- Stdout:
if:
- '<#if user=="childe">true</#if>'
- Elasticsearch:
cluster: hangoutcluster
hosts:
- 192.168.1.200
index: 'hangout-%{user}-%{+YYYY.MM.dd}'
index_type: logs # default logs
bulk_actions: 20000 #default 20000
bulk_size: 15 # default 15 MB
flush_interval: 10 # default 10 seconds
concurrent_requests: 0 # default 0, concurrent_requests设置成大于0的数, 意思着多线程处理, 以我应用的经验,还有是一定OOM风险的,强烈建议设置为0
- Kafka:
broker_list: 192.168.1.200:9092
topic: test2
其 pipeline 设计和 Logstash 不同的是:整个 filter 和 output 流程,都在 Kafka 的 consumer 线程中完成。所以,并发线程数完全是有 Kafka 的 partitions 设置来控制的。

实际运行下来,hangout 比 Logstash 确实在处理能力,尤其是 CPU 资源消耗方面,性价比要高出很多。

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

filebeat的定位是什么?和logstash的区别是什么?如果使用filebeat,日志流该如何架构

Beatsmedcl 回复了问题 • 3 人关注 • 1 个回复 • 12417 次浏览 • 2015-12-08 09:32 • 来自相关话题

不能插入中文是什么原因

回复

Elasticsearchjiang_hoo 回复了问题 • 1 人关注 • 1 个回复 • 4905 次浏览 • 2015-12-08 07:58 • 来自相关话题

elasticsearch为什么先写translog再执行具体操作?

回复

Elasticsearchjingkyks 回复了问题 • 2 人关注 • 1 个回复 • 5234 次浏览 • 2015-12-07 16:47 • 来自相关话题

Day6:用logstash-input-http_poller模拟nginxbeat

Advent三斗室 发表了文章 • 0 个评论 • 5999 次浏览 • 2015-12-07 00:18 • 来自相关话题

Elastic 公司最近推出了 beats 系列,在官方的 packet/top/file{beat} 之外,社区也自发制作了一些比如 docker/nginx/

不过很可惜的是:nginxbeat 只支持两个数据来源:标准的 ngx_http_stub_status_module 和商业版 Nginx Plus 的ngx_http_status_module

我们都知道,ngx_http_stub_status_module 输出的信息太少,除了进程级别的连接数,啥都没有。那么,在使用开源版本 Nginx 的我们,还有别的办法么?

在官网的第三方模块列表里,发现了一个韩国人写的 nginx-module-vts。这个扩展可以做到 vhost 级别的状态信息输出。(我知道国人还有很多类似的统计扩展,但是没上官网,不便普及,就忽略吧)

但是,不懂 Golang 的话,没法自己动手实现一个 nginx-vts-beat 啊。怎么办?

其实我们可以用 logstash-input-http_poller 实现类似的功能。

首先,我们要给自己的 Nginx 加上 vts 扩展。编译方式这里就不讲了,和所有其他第三方模块一样。配置方式详见README。我们这里假设是按照核心和非核心接口来统计 URL 的状态:
http {
vhost_traffic_status_zone;

map $uri $filter_uri {
default 'non-core';
/2/api/timeline core;
~^/2/api/unread core;
}

server {
vhost_traffic_status_filter_by_set_key $filter_uri;
location /status {
auth_basic "Restricted";
auth_basic_user_file pass_file;
vhost_traffic_status_display;
vhost_traffic_status_display_format json;
}
}
}
然后我们需要下面一段 Logstash 配置来定期获取这个数据:

input {
http_poller {
urls => {
0 => {
method => get
url => "http://localhost:80/status/format/json&quot;
headers => {
Accept => "application/json"
}
auth => {
user => "YouKnowIKnow"
password => "IKnowYouDonotKnow"
}
}
1 => {
method => get
url => "http://localhost:80/status/con ... up%3D*"
headers => {
Accept => "application/json"
}
auth => {
user => "YouKnowIKnow"
password => "IKnowYouDonotKnow"
}
}
}
request_timeout => 60
interval => 60
codec => "json"
}
}
这样,就可以每 60 秒,获得一次 vts 数据,并重置计数了。

注意,urls 是一个 Hash,所以他的执行顺序是根据 Hash.map 来的,为了确保我们是先获取数据再重置,这里干脆用 0, 1 来作为 Hash 的 key,这样顺序就没问题了。

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

怎么查询es下有哪些索引

Elasticsearchhongwentakkk 回复了问题 • 2 人关注 • 2 个回复 • 43523 次浏览 • 2015-12-08 15:38 • 来自相关话题

kibana显示查询速度非常慢

默认分类medcl 回复了问题 • 2 人关注 • 1 个回复 • 12316 次浏览 • 2015-12-09 16:10 • 来自相关话题

Day5: Kibana4的rison序列化妙用

Advent三斗室 发表了文章 • 0 个评论 • 4916 次浏览 • 2015-12-05 22:49 • 来自相关话题

前几天,我们已经一步步搞定了一个业务日志从 mapping 设计到异常统计追踪上的用法。作为一个工程师,自评 100 分 —— But,领导找上门来说:你这个结构怎么搞的嘛,在 Kibana 上完全没法搜索!让客服和分析师怎么办?

因为 Kibana 上的输入框,默认使用 querystring 语法。这个里面压根没有对 nested object 的相关语法设计。

不过经过仔细查阅,发现原来 Kibana4 的搜索输入框,其实除了 querystring 以外,还支持 JSON 字符串的方式直接定义 query!其具体处理方式就是:把你输入的字符串判断一下是否是 JSON,如果是 JSON,直接替换进{"query": 这里};如果不是,才生成一个 querystring query 放进 {"query":{"query_string":""}}

那我们来尝试一下把第三天写的那个 nested query 贴进搜索框里。内容是:
{
"nested" : {
"path" : "video_time_duration",
"query" : {
"match" : {
"video_time_duration.type" : "1"
}
}
}
}
意外发生了!Kibana4 竟然在页面上弹出一个错误提示,而且搜索栏的放大镜图标也变成不可以点击的灰色样式,敲回车同样没有反应:

当然我很确定我的数据是没问题的。这时候 Kibana4 的另一个特性救了我:它默认会把所有可修改的状态都 rison 序列化了放在 URL 里!于是我尝试直接在浏览器地址栏里输入下面这段 URL:
http://kibana:5601/#/discover?_g=()&_a=(columns:!(_source),index:%5Blogstash-mweibo-%5DYYYY.MM.DD,interval:auto,query:(nested:(path:video_time_duration,query:(term:(video_time_duration.type:1)))),sort:!('@timestamp',desc))
地址栏回车之后,页面刷新,看到搜索结果更新(如上图)!虽然搜索栏依然有报错,但实际上 nested query 生效了,我们在下面 search 里看到的都是成功过滤出来的『有过卡顿的视频播放记录』日志。

感谢 Kibana 如此开放的设计原则!

ps: 目前 nested aggregation 还没法像这样简单的绕过,不过已经有相关 pull request 在 review 中,或许 Kibana4.3/4.4 的时候就会合并了。有兴趣的同学,也可以跟我一样先睹为快哟:https://github.com/elastic/kibana/pull/5411

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。
 

Day4: significant_terms聚合

Advent三斗室 发表了文章 • 0 个评论 • 7930 次浏览 • 2015-12-05 12:13 • 来自相关话题

昨天我们通过 nested aggregation 计算出来,视频卡顿次数最多的是北京。不过这个结论似乎也没有什么奇怪的,北京的网民本身就多嘛。

Elasticsearch 还有一个有趣的聚合方式,叫 significant_terms。这时候就可以派上用场了!

我们把昨天的 query JSON 中,最后一段 sub agg 改成这样:
    "city_terms" : {
"significant_terms" : {
"field" : "geoip.city",
"size" : "4"
}
}
重新运行请求,得到的响应结果是这样的:
"city_terms" : {
"doc_count" : 2521720,
"buckets" : [ {
"key" : "武汉",
"doc_count" : 85980,
"score" : 0.1441705001066121,
"bg_count" : 15347191
}, {
"key" : "北京",
"doc_count" : 142761,
"score" : 0.11808069152203737,
"bg_count" : 43176384
}, {
"key" : "广州",
"doc_count" : 104677,
"score" : 0.10716870365361204,
"bg_count" : 27274482
}, {
"key" : "郑州",
"doc_count" : 59234,
"score" : 0.09915501610550795,
"bg_count" : 10587590
} ]
}
大家一定发现了:第一名居然变成了武汉!

而且每个结果后面,还多出来了 score 和 bg_count 两个数据。这个 bg_count 是怎么回事呢?

这就是 significant_terms 的作用了。这个 agg 的大概计算步骤是这样:
  1. 计算一个 term 在整个索引中的比例,作为背景计数(background),这里是 15347191 / 2353406423;
  2. 计算一个 term 在 parent agg 中的比例,作为前景计数(foreground),这里是 85980 / 2521720;
  3. 用 fgpercent 除以 bgpercent,得到这个 term 在 parent agg 的条件下比例凸显的可能性。


由于两个作分母的总数其实大家都是相等的,其实比较的就是各 term 的 doc_count / bg_count 了。

当然,实际的 score 不只是这么简单,还有其他综合因素。毕竟也不能给出来本身就没啥关注度的数据嘛。

我们还可以来验证一下『武汉』的 bg_count 是不是这个意思:
curl -XPOST 'http://10.19.0.67:9200/logstash-mweibo-2015.12.02/_count?pretty' -d '{
"query" : {
"match" : {
"geoip.city" : "武汉"
}
}
}'
结果如下:
{
"count" : 15347191,
"_shards" : {
"total" : 100,
"successful" : 100,
"failed" : 0
}
}
数值完全对上了。没错,bg_count 就是『武汉』在整个索引里的总数。

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

Day3:nested object的查询和聚合示例

Advent三斗室 发表了文章 • 0 个评论 • 11206 次浏览 • 2015-12-05 12:04 • 来自相关话题

话接上回,我们只是解决了写数据的问题,这种格式不太符合常规的数据怎么读,也需要我们相应的做出点改变。

今天以一个实际的例子来讲。我曾经处理过一份数据,记录的是视频播放的卡顿情况。其中有一个数组,每次卡顿就新增一个对象元素。所以设计的 mapping 如下:
         "video_time_duration" : {
"type": "nested",
"properties" : {
"duration" : {
"type" : "long",
"doc_values" : true
},
"type" : {
"type" : "long",
"doc_values" : true
}
}
},
其中 type 只有 0 或 1 两个可能,0 表示播放正常,1 表示卡顿。所以下面我们发一个请求,要求是计算这样的结果:

出现了播放卡顿的用户,单次卡顿时长在10到200ms的,最常见于哪些城市?

下面是我们最终的查询请求 JSON:
{
"size" : 0,
"query" : {
"nested" : {
"path" : "video_time_duration",
"query" : {
"match" : {
"video_time_duration.type" : "1"
}
}
}
},
"aggs" : {
"video" : {
"nested" : {
"path" : "video_time_duration"
},
"aggs" : {
"filter_type" : {
"filter" : {
"term" : {
"video_time_duration.type" : "1"
}
},
"aggs" : {
"duration_ranges" : {
"range" : {
"field" : "video_time_duration.duration",
"ranges" : [
{ "from" : 10, "to" : 200 }
]
},
"aggs" : {
"city" : {
"reverse_nested": {},
"aggs" : {
"city_terms" : {
"terms" : {
"field" : "geoip.city"
}
}
}
}
}
}
}
}
}
}
}
}
很明显的可以看到对 nested object 里存的数据,不管是做 query 还是 agg,都需要显式的加上"nested": {"path" : "video_time_duration" 的声明。这样,才能保证我们取到的 duration 数值是对应 type 为卡顿的,而不是流畅播放的。

大家可能注意到,我同时在 query 和 aggFilter 中重复了一场 term 过滤。其中这次 nested query 是不必要的,除了作为语法展示以外,也有一个减少 hits 数的作用。但是和一般的请求不同的是,这里不可以去掉 nested agg 里的 term filter,因为 nested query 只是拿到『有过卡顿』的数据 id。不加 filter,聚合 duration 的时候,会把卡过但也流畅过的那部分都计算在内。

另一个要点:当我们过滤好 nested 数据的时候,要取顶层其他字段的内容,在 sub agg 里是无法直接获取的,需要额外使用一次 reverse_nested 来跳出这个 nested path,才可以恢复正常的 agg 路径。

最终得到的响应如下:
{
"took" : 4672,
"timed_out" : false,
"_shards" : {
"total" : 100,
"successful" : 100,
"failed" : 0
},
"hits" : {
"total" : 9560309,
"max_score" : 0.0,
"hits" : [ ]
},
"aggregations" : {
"video" : {
"doc_count" : 33713503,
"filter_type" : {
"doc_count" : 25441559,
"duration_ranges" : {
"buckets" : [ {
"key" : "10.0-200.0",
"from" : 10.0,
"from_as_string" : "10.0",
"to" : 200.0,
"to_as_string" : "200.0",
"doc_count" : 2521720,
"city" : {
"doc_count" : 2521720,
"city_terms" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 2267886,
"buckets" : [ {
"key" : "北京",
"doc_count" : 142761
}, {
"key" : "广州",
"doc_count" : 104677
}
]
}
}
} ]
}
}
}
}
}
响应数据中,我们可以直接看这些 hits 和 doc_count 数据。他们表示:
  1. 一共命中了『有过卡顿』的视频播放次数:9560309;
  2. 其中记录下来的播放间隔 33713503 次;
  3. 里面有 25441559 次是卡顿(减一下即 8271944 次是流畅咯);
  4. 里面卡顿时长在 10-200 ms 的是 2521720 次;
  5. 这些卡顿出现最多的在北京,发生了 142761 次。


数据蛮有意思吧。ES 能告诉你的还不止这点。更有趣的,明天见。

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

Day2: 利用nested object缩减mapping大小

Advent三斗室 发表了文章 • 0 个评论 • 6186 次浏览 • 2015-12-05 12:00 • 来自相关话题

Elasticsearch 中有些高级特性,可能不太常用,但是在恰当场景下,又非常有效果。今天,我们来说说 nested object。

我们都知道,Elasticsearch 宣传中是 schemaless 的。但实际使用中,并不是完全的随意。比如过多的 kv 切割,会导致 mapping 大小暴涨,对集群稳定性是个不小的挑战。

以 urlparams 为例,下面这段 urlparams 直接通过 logstash-filter-kv 切割得到的结果,需要在 mapping 中占用 4 个字段的定义。
"urlparams" : {
"uid" : "1234567890",
"action" : "payload",
"t" : "1449053032000",
"pageid" : "v6"
}
如果哪个开发一时想不开(我真的碰到过),把 urlparams 写成 uid=123456789&action=payload&1449053032000=t&pageid=v6,那基本上整个 ES 集群就会被过于频繁的 mapping 更新搞挂了。

这时候,我们修改一下 mapping 定义:
{
"accesslog" : {
"properties" : {
"urlparams" : {
"type" : "nested",
"properties" : {
"key" : { "type" : "string", "index" : "not_analyzed", "doc_values" : true },
"value" : { "type" : "string", "index" : "not_analyzed", "doc_values" : true }
}
}
}
}
}
同时在 Logstash 的 filter 配置中添加一段:
if [urlargs] {
ruby {
init => "@kname = ['key','value']"
code => "event['urlparams'] = event['urlargs'].split('&').collect {|i| Hash[@kname.zip(i.split('='))]}"
remove_field => [ "urlargs","uri","request" ]
}
}
生成的 JSON 数据变成这个样子:
"urlargs": [
{ "key": "uid", "value": "1234567890" },
{ "key": "action", "value": "payload" },
{ "key": "1449053032000", "value": "t" },
{ "key": "pageid", "value": "v6" }
]
这样,再错乱的 urlparams,也不会发生 mapping 变更,导致集群故障了!

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

Day1: 怎样让Logstash每次都从头读文件?

Advent三斗室 发表了文章 • 1 个评论 • 11922 次浏览 • 2015-12-05 11:56 • 来自相关话题

Advent Calendar 是各大技术社区每年 12 月大多会举办的一个系列活动。原意是圣诞节前夕的小礼品,延伸为每天一篇技术小分享的意思。最常见的包括 Perl Advent、sysadmin advent、web advent、performance advent 等。个人从 2009 年开始每年都看,从2013 年开始偶尔会参加其他社区的 advent 写作。今年考虑自己在 ELK Stack 上专注较多,在历次技术大会和最终出版的《ELK Stack权威指南》之外,又有一些新的发现和收获,干脆尝试一把自己一个人的 advent,也算是对 ELK 小知识的一种查漏补缺。

今天是 12 月 1 日,第一天,开天辟地,让我们也从最简单而又容易被忽略的一个小技巧开始吧!

每个上手 ELK 的新用户,肯定都需要测试一下读取文件输出到终端这步。在 Logstash 中,也就是配置这样一段:
input {
file {
path => ["/data/test.log"]
}
}
output {
stdout {
codec => rubydebug
}
}
不过很多新人的测试随后就卡在第二步了:当你修改一下配置,准备添加一段 filter 配置再重复运行 logstash 命令时,发现终端一直停滞没有输出

这是因为:Logstash 会记录自己读取文件内容的偏移量到一个隐藏文件里,默认情况下,下次启动,他会从这个偏移量继续往后读,避免重复读取数据。

这个隐藏文件,叫做 $HOME/.sincedb_****。过去很多文档,在解释了这个原理后,都会告诉大家解决办法:每次重新运行 logstash 命令之前,删除掉家目录下的 sincedb 隐藏文件。

但是这种办法很笨,不是么?

今天告诉大家一个更方便的办法,改用下面这段 Logstash 配置:
input {
file {
path => ["/data/test.log"]
start_position => "beginning"
sincedb_path => "/dev/null"
}
}
output {
stdout {
codec => rubydebug
}
}
要点就在这行 sincedb_path => "/dev/null" 了!该参数用来指定 sincedb 文件名,但是如果我们设置为 /dev/null这个 Linux 系统上特殊的空洞文件,那么 logstash 每次重启进程的时候,尝试读取 sincedb 内容,都只会读到空白内容,也就会理解成之前没有过运行记录,自然就从初始位置开始读取了!

好了,第一天就是这样。更多内容,敬请期待。

想了解更全面的 ELK Stack 知识和细节,欢迎购买我的《ELK Stack权威指南》,也欢迎加 QQ 群:315428175 哟。

怎么让es的sort排序基于查询结果

回复

Elasticsearchwin1027 回复了问题 • 4 人关注 • 1 个回复 • 8936 次浏览 • 2015-12-23 23:11 • 来自相关话题

mapper-attachments这个插件怎么用啊

Elasticsearchkangly 回复了问题 • 2 人关注 • 16 个回复 • 5835 次浏览 • 2016-11-11 10:34 • 来自相关话题

kibana出不来最新数据

回复

Kibanaelk_wdl 回复了问题 • 1 人关注 • 1 个回复 • 8474 次浏览 • 2015-12-02 16:09 • 来自相关话题